
AD-Ai62 453 SURFACE PLASMON DISPERSION RELATION AND LOCAL FIELD 1/1
ENHANCEMENT DISTRIBUT (U) STATE UNIV OF NEW VORK AT
BUFFALO DEPT OF CHEMISTRY D AGASSI ET AL DEC 85

UNCLASSIFIED UBUFFALO/DC/85/TR-1 NB8t4-86-K-B843 F/G 28/6 NLEIIIIIIIIIIu
EEEEEEEEEEEEEE
IIEEEEEEEIIEEE
I--llllllllllll



-sq

.2

III t i mumI

1111112L

-" " IIltll I.8
1.25 1. 1.

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS 1963 A

- 1 - -1 "- - .



AD- A162 453

OFFICE OF NAVAL RESEARCH

" "Contract N00014-86-K-0043

TECHNICAL REPORT No. 1

Surface Plasmon Dispersion Relation and Local Field Enhancement
Distribution For a Deep Sinusoidal Grating

by

Dan Agassi and Thomas F. George

Prepared for Publication

in DTC
Surface Science

Departments of Chemistry and Physics DEC1o195
State University of New York at Buffalo
Buffalo, New York 14260 B.

December 1985

Reproduction in whole or in part is permitted for any purpose
of the United States Government

This document has been approved for public release and sale;
its distribution is unlimited.

Cn)

, . . .



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
I . REPORT SECURITY CLASSIFICA1 ION 1b. RESTRICTIVE MARKINGS

Unclassified
2. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTIONiAVAILABILITY OF REPORT

Approved for public release; distribution
2b. OECLASSIFICATIONIDOWNGRAOING SCHEDULE unlimi ted

A. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

UBUFFALO/DC/85/TR-1
6& NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Depts. Chemistry & Physics ,..pp.a.b eI

State University of New York
6c. ADDRESS (City. tage and ZIP Code) 7b. ADDRESS (City. State and ZIP Code)

Fronczak Hall, Amherst Campus Chemistry Program
Buffalo, New York 14260 800 N. Qiuncy Street

| . . , Arlinpron. Vireinia 22217

Ga. NAME OF FUNDING/SPONSORING Sb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION i (applicalie)

Office of Naval Research I Contract N00014-86-K-0043

Bc. ADDRESS ICity. State and ZIP Codel 10. SOURCE OF FUNDING NOS.

Chemistry Program PROGRAM PROJECT TASK WORK UNIT

800 N. Quincy Street , ELEMENT NO. NO. NO. NO.

Arlington, Virginia 22217
| 1, TITLE Surface Plasmon Dispersion Relation and Local Field Enhancement Distribution

For a Deep Sinusoidal Grating
12. PERSONAL AUTHOR(S)

Dan Agassi and Thomas F. George

13s, TYPE OF REPORT 13b. TIME COVERED 114. DATE OF REPORT (Yr.. Mo.. Dayj 15. PAGE COUNT

Interim Technical FROM TO_ December 1985 46
16. SUPPLEMENARY NO0TATION

Physics Letters A

17 COSATI CODES 18. SUBJECT TERMS ,Continue on ruersle if necessary and identify by block number)

FIELD GROUP SUB. GR. SURFACE PLASMON DEEP METALLIC GRATING
DISPERSION RELATION SINUSOIDAL GRATING
LOCAL FIELD ENHANCEMENT DRESSED RAYLEIGH EXPANSION

1S9-', 8TRACT (Continue on reverse if nece.ary and identify by black number)

Two features of light scattering from a deep lossless metallic sinusoidal grating

are considered in the limit g/d-. o, where g and d are the height and periodicity of the
grating, respectively. It is found that the surface plasmon dispersion relation is

comprised of two flat bands with a frequency gapAw/&p= (T2 - 1)/2, where wp is the

volume plasmon frequency. For the local field enhancement distribution at the grating's

surface, the results show the existence of two quaiitatively distinct domains, i.e., A>.' d

and A<< d, where ), denotes the radiation wavelength. In both domains, however, the local

field enhancement is larger at the bottom of the troughs than at the top of the peaks. The

dressed Rayleigh expansion is used throughout for the analysis.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIPIE0/UNLIMITED SAME AS RPT. 9 OTIC USERS C Unclassified
22.. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUM3ER 22c. OFFICE SYMBOL

Include Aea Code,

Dr. David L. Nelson (202) 696-4410

DO FORM 1473,83 APR EDITIONOF I JAN 72 IS OBSOLETE. UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE



ii

1.

,



SURFACE SCIENCE, in press

SURFACE PLASMON DISPERSION RELATION AND LOCAL FIELD ENHANCEMENT

DISTRIBUTION FOR A DEEP SINUSOIDAL GRATING

Dan Agassi
Naval Surface Weapons Center
White Oak
Silver Springs, Maryland 20910, USA

Thomas F. George
Departments of Chemistry and Physics
State University of New York at Buffalo
Buffalo, New York 14260, USA

Abstract

Two features of light scattering from a deep lossless metallic

sinusoidal grating are considered in the limit g/d * -, where g and d

are the height and periodicity of the grating, respectively. It is

found that the surface plasmon dispersion relation is comprised of two

flat bands with a frequency gap Aw/wp (2 - 1)/2, where is the

volume plasmon frequency. For the local field enhancement

distribution at the grating's surface, the reults show the existence

of two qualitatively distinct domains, i.e., A >> d and A << d, where

A denotes the radiation wavelength. In both domains, however, the

local field enhancement is larger at the bottom of the troughs than at

the top of the peaks. The dressed Rayleigh expansion is used

throughout for the analysis.

7,
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1. Introduction

Light scattering from a deep grating, i.e., a grating for which

8 - 2lng/d >> 1 where g and d are the maximum (and minimum) extension

and periodicity of the grating, respectively (see Fig. 1), is a

relatively newly studied physical phenomenon. Moderately deep

gratings can now be fabricated, e.g., by photodissociation of

organometallic molecules at a substrate.1' The extremely deep

grating case (a + ), which is at the focus of this work, should be

considered as an idealized limit. This limit is complementary to the

shallow grating limit (B << 1), which is realized in many physical

systems and has been extensively explored over the last century.

The extremely deep grating regime is qualitatively different

3
from the shallow grating regime. It can be characterized as a strong

coupling situation in the sense that the many possible Bragg

reflections (Fig. 1) interfere strongly with each other, giving rise

to a scattered field of new qualitative features. By contrast, the

shallow grating regime can be analyzed in terms of a few 'weak' (in

comparison with the specular reflected light) Bragg reflections.

Unfortunately, attempts to solve the Maxwell equations for deep

gratings using the so-called Rayleigh expansion, which works

beautifully when 6 << 1 , have encountered numerical instabilities. 4

These difficulties have motivated the introduction of several

alternative schemes, 1,5 ,6 all of which, however, share difficulties in

the a >>> 1 regime. In another paper 3we have suggested yet another

scheme -- dubbed as the dressed Rayleigh expansion -- which overcomes

these difficulties. We have also explicitly demonstrated 3that this
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scheme converges for a sinusoidal grating (SG) of arbitrary a. Here

we apply the dressed Rayleigh expansion to study two aspects of light

scattering from a very deep metallic SG grating, namely, the surface

plasmon (SP) dispersion relation and the distribution of the local

field enhancement along the grating's surface.

Our results are valid in the 8 - limit and under several

approximations which are spelled out as we go along. For the SP

dispersion relation we find two flat bands (see Fig. 2). The

frequency band gap Aw is given by Au/up 2 .207, where is the
p 2

volume-plasma frequency of the metal. We interpret the two bands to

reflect two classes of localized surface modes -- those for which the

field maxima are in the peaks and in the troughs of the grating

respectively. A similar situation occurs in standard band structure

studies. The fact that we obtain dispersion bands rather than the usual

dispersion curves for a << 1 is in keeping with studies of moderately

7,8
deep gratings, g/d < 1, where it has been observed for the latter

that as g/d increases new SP dispersion branches pop out in pairs at the

u/W 1//2 line. As g/d keeps increasing, one branch of the pair isP

pushed upward and the other branch is pushed downward to be followed by

the emergence of a new pair of branches. Since the available frequency

interval is confined both from below (/wp = 0) and from above (u/u =
p p

1), the accumulation of the branches into bands as 8 * " may be

i{ expected. However, the particular band gap and widths we derive [Eqs.

(4.4) and (4.5)] may be, in part, an artifact of our approximations. SP

dispersion bands have also been derived for an infinitely large stack of
9

thin metallic films.

.. .' "' - / " , , : . - Li- " i .. . - '--.1-- • . .. '
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We also evaluate a simple figure-of-merit representing the local

field enhancement distribution. The local field enhancement R is

d+2 1 2 ,
defined as R - * where E is the total electric field and E

is the incident electric field.6' 0  The value and distribution of R are

of prime importance in determining optical and chemical processes near

the grating. To remain within reach of a simple analytical result, we

evaluate only R(T/B) - IR(T)/R(B)1 2 , where the points T (top) and B

(bottom) are defined in Fig. 1, and the incident light is normal to the

grating. The result [Eq. (5.3)] indicates the existence of two distinct

regimes, i.e., X >> d and X << d, where X is the wavelength of the

incident light. The R(T/B) ratio in the former is smaller than in the

latter, and in both regimes R(T/B) - 1/B. These findings are understood

in terms of the following physical picture: The incident field induces

the electrons in the metal into an oscillating motion, and the electrons

respond. Since the grating is deep, the motion of the electrons at the

grating's peak is inhibited by the grating's boundaries, and much less

so at the troughs' bottoms, and hence R(T/B) << 1. The distinction

between the X >> d and X << d regimes can also be understood in the same

vein: The response of the electrons at the bottoms is inhibited by the

grating's boundaries and hence depends only mildly on X. The response

of the electrons at the peak's top, however, is strongly dependent on A:

For X >> d, these electrons respond very poorly due to the confinement

of the grating's boundaries, while, as A ever decreases, the top

electrons can respond ever more efficiently. Consequently, the ratio

R(T/B) is larger for X << d than for A >> d.

4-

.€J
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The paper is organized as follows: We introduce in Section 2 the

dressed Rayleigh expansion in the context of the SG. In Section 3 we

present the central approximations which enable a simple solution for

the light scattering problem in the asymptotic limit 0 * The results

of Section 3 are then applied in Section 4 to analyze the SP dispersion

relations and in Section 5 to evaluate the local field enhancement

distribution for a particularly simple configuration. Section 6 is a

discussion and summary.

2. Dressed Rayleigh Expansion and Sinusoidal Grating

We introduce in this section the dressed Rayleigh expansion and

the pertinent formulas of the SG. As has been demonstrated elsewhere,

the dressed Rayleigh expansion converges for an SG arbitrary 0 and

therefore provides a convenient framework to analyze the a * w limit.

All expressions in this section are exact. The notations throughout are

defined in Fig. 1

The dressed Rayleigh expansion for the electromagnetic fields is
3

O -i[k x - WO(£)(z + g)]
E (x,z) - C {YO(R)po,_() e
00

i[k x + W1(£)(z + g)]+ a0(M po +.(X) e}

,.(x ) = c i[k x - W1 ()(z - g)]
S(Xz) I "2() pi,) e1 2 (2.1.a)

and

S,. .
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CD ii WMg

o(X,Z) k(O) "e i X - WI(£)(g j z)M
0 k o-a

i[kLx + Wo(£)(g + z)J

0-- i[k x X iW 1(M (g -Z )3

(x z )  Y() e (2.1.b)

where
+iW ()g

0Y () - 6 E e (2.2)o L'O O,p(2)

and

k(i) = /ci k, k = o/ ,  kG = 2v/d
)1

W () - k2 (i) - k2 11 2  k k +Lk
G

pi,±) - [kiz W,()x], 3 x x z

for i - 0,1 (2.3)

In (2.1) - (2.3) the subscripts of the fields refer to the domains (0 or 1),
-iW 0t

* the time dependence of the fields is assumed to be e k1 is the

x-momentum component label of the field, x, z and s are unit operators

in the obvious three directions, EOp is the arbitrary amplitude of the

p-polarized incident light normal to the grating's grooves, and we

always choose Im[W i)] or Re[Wi)] 0. The height g (positive) is
i i

half the maximum z-extension of the grating (Fig. 1), and the central

parameter B is again

8 gkG  (2.4)

The dressed Rayleigh expansion coefficients satisfy

- M, aO(i)- P(m)

. N 1(2) = (m) , (2.5.a)m,i

F:: .
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where the matrix M, for instance, can be dubbed as the "Fresnel matrix".

It is given by

i(W1 (m)+ W()g M, e (m)g B
MN, - e M , u )-e (

i(W0 (m) + W (i))g NB iWo(m)g BNm,. - e m, ' v(m) -e vB(m) ,

(2.5.b)

and

B Wo(0)W 1 (m) + k k im- (W'() -W()
mi W () - WI (M) gm- 0 M

B I M.W 0 (m) + k i k rM-i in)
N W()o ( ) i [(W 1(9M) + Wo(m))]
m,i WI(M - Winm)-i

B -Wo(ON1W(M) 
+ kokm 

*(M) Wo(0) + W 1 (M) m-g(W0 (0) W1O(m))]EOp

0e 1

VB(M) = W , (2.6)

where J denotes the Bessel function of order v.
V

It has been shown elsewhere 3 that the set of equations (2.5) can be

safely truncated at a maximum I1I-value L of the order a, since the

matrix elements of M decay exponentially with 9 or m and become

insignificant beyond that point. A more detailed examination reveals

that the important matrix elements of M are distributed in two lobes:

one lobe is for m 'small' and ILI 'large' and the other for 9 'small'

and Iml 'large'. The diagonal terms diminish exponentially with 9. m

faster than either lobe's length.

- Once the set of equations (2.5) is solved, all properties of the

scattered fields are known. The difficulty when 8 - , however, is that

the relevant matrix M (or N) is very large and highly non-diagonal. We

L A.

-4 . . .. . . . . . . . . . . . .



introduce in the next section an asymptotic approximate solution of

(2.5) and then explore its implications with regard to the SP dispersion

relation and light scattering.

3. Approximate Solution for 6 >>> 1

To discuss the fields scattered by the grating, it is necessary to

invert the Fresnel matrix M [Eq. (2.5)], which has an effective

dimensionality on the order of B when a >> 1. Obviously to gain insight

we need to introduce further simplifying approximations. The

construction of a simple approximation to M_ is the content of' this

section. The sequence of' approximations below that lead to the final

result [Eqs. (3.8)-(3.10)] assumes that a >>> 1, i.e., very deep

gratings. At some points we resort to additional approximations

motivated by the gained mathematical simplicity. We believe that the

plausibility of' the results derived in Sections 4I and 5 based on the

-~1
approximate M vindicate the approximations. To gain perspective on

the 8 >> 1 regime considered here, we give the analysis pertaining to

shallow gratings in Appendix A.

An attractive feature of' M, or M B, is its partial separability in

the Inm" and 'It" indices [Eq. (2.6)]. As will become obvious shortly,

separable matrices are convenient mathematically. We are therefore

motivated to devise a separable approximation to the other factors in

(2.6), in particular to the Bessel function factor. This turns out to

be possible provided Iml, ji and Im-il are very large compared to

unity, which is the case for most of the elements of the highly non-

diagonal matrix M.
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Using (2.6) the ensuing quasi-separable approximation is (Appendix

B)

. (S) 1I-
[W)1 - 3/2 im-h[W ()W 1 (m) k k k

m i g[Wo(i) 0 W1(m)] e 0

ig[W 0(9M + W 1(in)] 4
Cex e + e - i , (3.1.a)

where

C kG 1___C"/ 2--0 V2w(I + 2) 1 / 4

(V n(B) [Wo) M [-m i 1
k[ C + ]eG

" (a) = , + + ln[B/(l + /T + 2)] (3.1.b)

The above is valid for Im,Iiljm-ki >> 1. It can be easily checked by

comparison with (2.6) that (3.1) provides a surprisingly good

approximation even for the diagonal element M,,.

Note that M(S ) has a separable form except for the denominator

3/2[Wo(i)-W (m)]3. This is to be expected since a fuliy separable form0 1
for M(S)
for M does not possess an inverse. To maintain the simplicity of a

separable approximation on the one hand and yet to secure the existence

of a simple inverse on the other hand, we introduce the following

additional approximation: Consider first the off-diagonal matrix
elmetsofMS)
elements Of M ). These elements are grouped into two lobes (Section

2), i.e., when Iml is 'small' and ili is 'large', and vice versa. When

Iml is 'small' and I£i is 'large', for example, the fastest IZI-changing

factor in M is the exponential [Eq. (3.1)]. Consequently, the above

mentioned now separable denominator, which changes with I much more
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slowly, acts approximately as a normalizing factor. It can be therefore

approximated by a suitably chosen constant, denoted by C For the sake

3/2of simplicity, we further approximate [Wo( )-W1 (m)] - C for both the0 1

Iml << It( and ILI << Imi elements. The diagonal elements of M(S)

comprise the complementary (minority) group of elements to the off-

diagonal elements just discussed. In this case, the above argument

concerning the fastest [j=Iml-changing factor in M(S) is still valid.

However, the corresponding constant approximating the non-separable

denominator is obviously quite different, i.e., [W0 ()-W1()3/
2  C2.

The foregoing discussion suggests therefore the approximation

(S)
M £ m, z D 1 . VD , (3.2)

V C i M [W( k k ig[W 0() + W1(m)] e -i4• V, =W C()W 1~ m  + ~me {ei +e

c = 0/C , (3.3)

and C has been defined in the discussion above.

The diagonal elements D in Eq. (3.2) depend, of course, on the

choice of C and C However, regardless of the particular choice, due
ig[Wo(9.) + W1 (m)]

to the convergence factors e , the number of

significant diagonal elements is of the order of unity. Therefore,

there are only very few significant diagonal terms in comparison with

the number of off-diagonal terms, yet if they are neglected, Eq. (3.2)

ceases to have an inverse. We have therefore a situation where a few

diagonal terms are not Important in terms of physical results, yet due

to the particular mathematical structure (separability) it is necessary

to keep them to assure the existence of an inverse. Under such

A A PA
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conditions, it is probably immaterial as to how the diagonal terms are

chosen, provided the calculated observable does not depend on the

specifics of the choice. We therefore simplify Eq. (3.2) further by the

approximation D - D, where D is a very small number of the order e-0 or

less. Again, to be consistent with the arguments above, we can use the

ensuing approximation only to calculate observables that do not depend

on D, such as those analyzed In the next two sections. We would like to

emphasize that the D - D approximation is not essential, i.e., it is

possible to invert Eq. (3.2) as it stands. The substantial

simplification gained by adopting this approximation, however, warrants

an examination. Therefore, Eq. (3.2) is replaced by

. M - D6 *V (3.4)
m, m,9 mj

where D is a very small number of the order e

"* - The inversion of Eq. (3.4) can be obtained now in a straightforward

manner. Note from Eq. (3.3) that V is comprised of four separable

terms,

14
Vm, j t a.(m) b (L) (3.5)

where the factors a and b are extracted from Eqs. (3.1.b) and (3.3)

-. [see Appendix C, Eq. (C.2)]. The form of Eq. (3.5) has the attractive

property that V to the n-th power is given by

nVa = 4 n-1(Vm, a (m)[A Ij b (M) (3.6)
i- " i,j 1

where the auxiliary interaction matrix A is of dimension 4 with the

elements

A - [ b iM)a (1) • (3.7)
i,j I

.9.--,

- * ** * *- ,j i 2:K -W-r ?.K *.>-:~ * . * :*
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The auxiliary matrix A (Appendix C) plays a central role in all

subsequent manipulations. Consequently, expanding the inverse of

Eq. (3.4) in a geometric series and using Eq. (3.6) yields

-1 1 1 1-1

4

(M-) = -6 -_ - a (m)([1 -A]- )i bj(i)m "t Dm,t D2 iji Dl

1
- [6 -j a (m)[A 1 ]i j b ()] (3.8)laiiJ=1

The second line in Eq. (3.8) follows since <IAI>/D, where <IAI> is a

typical average value of the elements of A [see (C.18) and (C.20)] and D

is an extremely small number.

The approximate inverse (3.8) is a key result of this work. The

unknown parameter D appears as a multiplicative factor, implying that

(3.8) can be used only to evaluate ratios so that D drops out from the

final result. Note that (3.8) embodies the reduction of an inversion

problem of a B x 0 matrix to the inversion of a 4 x 4 matrix.

Based on the analytical expressions for the matrix elements of A
-1

(Appendix C), the inverse A can be further simplified. The key remark

is that when B "+ ®, the matrix elements denoted by "a" in Table 1 are

substantially smaller than the rest of A [see (C.11) and following

discussion] and therefore can be neglected. Consequently,

det(A) = det(A ) det(A

det(A Y A1,2 A3,4 - A1,4 A3,2

det(A ) = A A - A A (3.9)
-6 2,1 4,3 2,3 4,1(39

where the symbol "det" indicates a determinan' , and

- . - . . . . . . . .

- . . . -..- -..-
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0 0 0 0

-11 A 0 -A 0
A = det(A ) 3,4

0 0 0 0

4 -A3, 0 AI 0
A3,2 0A1,2 0)

' 0 A4 3  0 -A2 3

',.+ det(A 0 0 0 (3.10)

0 -A4,1 0 A2,1

0 0 0 0

+ mixed Y and 6 terms

The simplicity of (3.9) and (3.10) in conjunction with (3.8) is most

gratifying. It indicates an expectation that in the limit 0 >>> 1, as

in the B << 1 limit, the physics should simplify. All that is needed to
-1

obtain M are eight matrix elements, combined in the simple form of

(3.10)1

4. Surface Plasmon Dispersion Relation

Surface plasmon excitations are collective, surface-attached

oscillations of the metal's electron gas, well studied in the context of

flat metallic surfaces and shallow gratings.7 ,8  For the case of a

shallow grating, the dispersion relation is comprised of many branches

(for a lossless metal, as assumed here throughout) which are arranged in

pairs above and below the line k/k = V2, where k = w /c and w is the-- p P PP

volume plasmon frequency. In this section we derive the dispersion

relation for the 8 - w limit, i.e., pertaining to very deep gratings.

The emergence of pairs of dispersion relation branches when B 0

can be understood using arguments employed in interpreting the opening

". of a band gap for electrons moving in a periodic ionic potential.1 2 In

*-. .
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the latter case there are two interfering combinations of unperturbed

electron wave and the umklapp-reflected wave. Since one combination is

centered at the ions' sites and the other between ions, the associated

energy of these two combinations are split and a band gap opens. In the

present case the Bragg reflections play the role of the umklapp

processes and the unperturbed electron waves -- by the flat-surface SP

mode (see Appendix A)and hence the pairs of dispersion branches. We

expect this type of dichotomy to persist for 0 -# o. The remaining Issue

is therefore how do these pairs of branches accumulate for B * 0, given

that the available frequency domain is bounded from below by w/wp - 0

* and from above by w/u 1 .

By definition, the SP excitations decay exponentially in both z-

directions, Fig. 1, i.e., these are excitations for which E - 0 in

(2.6). Consequently, to have a non-trivial solution of the Fresnel

equations (2.5), the condition

det(M) - 0 (4.1)

determines a function of k(O) versus k,, provided that -k k kG2,

i.e., k is confined to the first Brillouin zone.7  Condition (4.1) is

tantamount to finding the points where M does not exist (poles).

Hence, in the context of the approximate inverse (3.8), Eq. (4.1)

transcribes into det(A) - 0. The determinant of A, however, is given by
"2

(3.9) in the leading asymptotic order. Consequently, since det(A ) 0

outside the light cone [see Eq. (C.22)], the SP dispersion relation is

simply

II

det(A Y A 12A 31 A 1 A 3 0 (4.2)

1,2 31 1,4 3,
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. "£ Inserting into (4.2) the explicit expressions for the matrix elements

(C.20) yields

[2  2 2 2
13k (0) + k (1))(k (0) + 3k (1)]

2 k2  23[k (0) + k(1)

""sin[L(a + Y)]sin[a-11 - sinL[(a - Y)]sin[a + Y]  .3.a)

-." ~sin[L(a + Y)]sin[- ] s2nL(-

where k(i) - V k from (2.2) andI

- 2rk /kG

kG-"i"k f- k2(O0) k2 M- )]1 / (43.b)

In (4.3.a) L is a very large number of the order B [see the discussion

after Eq. (C.12)], the precise value of which is immaterial (see below).

The analysis of (4.3) is quite simple. Consider first the k(O)

k p/[1 + 01 1/2 regime, where a and obviously Y of (4.3.b) are real and

hence the RHS of (4.3.a) is real and positive. It can be easily shown

that for (4.3.a) to have a solution it is necessary that

k < kp/[3E0 + /2. When k(O) Z kp/[l + GO]I/2 the a-parameter is

imaginary and hence the RHS of (4.3.a) is real and negative. Simple

considerations show again that

to make the LHS of (4.3.a) negative it is necessary that k < [3 - 1 2 k
3~c0  p

in order for a solution to (4.3) to exist, it is necessary that

(assuming c0 - 1 for simplicity)

k k

2 . o -2 p p (4 .4)

Condition (4.4), however, is also sufficient. Since L - >>> 1, the

RHS exhibits oscillations which are ever increasing in amplitude and
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frequency as 0 is increased. Therefore, ~xk-value within the

admissible ranges (14.14) generates a solution of (4.3), i.e., the

dispersion relation constitutes two bands (Fig. 2). The frequency gap

Aw between the bands is according to (14.44)

Au - 1 (4.5)
W 2

The results (14.44) and (44.5) describe the accumulation of dispersion

branch pairs mentioned in the beginning of this section. The

interpretation of the two bands is identical to that of the two members

or a dispersion branch pair: The two bands are comprised, respectively,

of modes in which the field is mostly localized either in the troughs or

in the peaks of the grating. We cannot be sure at this point to what

degree the particular band gap (4.5) and band widths are an artifact of

our approximations. At the very least, (4.4) and (4.5) indicate domains

of high density of dispersion-relation curves.

Note that the dispersion relation (44.3) or (44.4) does not depend on

g, k or k The independence of g or k can be understood as follows:
G I.G

If B - is interpreted as g * and d finite, then obviously the result

-*of any observable cannot depend on g in the asymptotic region. By the

same token, the limit B can be construed as keeping g finite but

letting d *0, which leads again to the conclusion that the result

cannot depend, to the leading order, on k .* The independence of the

band structure of may be an artifact of our approximations. The

behavior of the matrix elements of M near the light cone, for instance,

is controlled by the W (k) sectors [Eq. (2.2)], with the square-root

feature playing an essential role (Appendix A). On the other hand, in

all manipulations employed here, we expand the square root W1 i) as
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w ( M = i[Ik 'I - ' J 1 (4.6)

2

which destroys the regardation effects near the light cone.

5. Local Field Enhancement Distribution for Normal Incident Light

As a second application of our central approximation (3.8), we turn

now to the calculation of the local field enhancement distribution at

the grating's surface. The local field enhancement R(x,z) is defined as

-+2

R(x,z) (Xz) It measures the collective response of the
E -. I

LOP

electrons in the metal to an incident electromagnetic field, and is of

obvious importance in determining optical and scattering processes near

11the grating. To simplify the analysis, we pick the simplest

configuration. We assume normal incidence of the p-polarized light and

consider the ratio of the local field enhancements at the top of the

peak to that at the bottom of the trough (points T and B in the notation

of Fig. 1). This ratio, denoted by R(T/B), is a convenient figure-of-

merit describing the local field enhancement distribution. Since R(T/B)

is a ratio of two fields, the unknown constant D in (3.8) does not enter

the final expressions.

Combining (3.8), (3.10), (2.5) and (2.1), it is straightforward to

obtain for the electric field in region 0 (Fig. 1)

}. -. ilkox  W W (O)z ]

0 (xz) Y0 (O)e Po (o)

- i[kx W ()z]Ell P (+M e IC£)

- ZP, ) eX a (i)}(A-1) I b (m).(m)}](i) + W0 L~nE. J, n-1 Z -- -- M.
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- inc(xz) + E (xz) + E (x,z) . (5.1)

The decomposition of Eo(x,z) in the last line of (5.1) reflects the

structure of (3.10): The first term in (3.10), involving the matrix

elements A1,2' A1 ,4' etc. (or class-Y elements in the terminology of

Appendix C and Table 1) gives rise to field components that vary very

rapidly with small changes in either k, k or kG, etc. This feature is

manifested in the explicit expressions for these matrix elements [Eq.

(C.20)] and has been exploited already in conjunction with the SP

dispersion relation (Section 4). The corresponding component in the

total field is denoted by Ef(xz), where the subscript "f" indicates

"fast". The second term in (3.10) involving the elements A2 , A2 3 ,

etc. (class-6 in the terminology of Appendix C and Table 1) changes

slowly with small changes in k, k , etc. and gives rise to the "slow"

component in the total field, denoted by Es (x,z) in (5.1). The incident

field, denoted by Einc(xz), is the first term on the LHS of (5.1). The

decomposition (5.1) of the total field into a fast oscillating component

f(x,z) and a slow envelope E (x,z) is expected due to the manyfan

interfering components (Bragg reflections) of which E0 (x,z) is

comprised.

In terms of the decomposition (5.1), we identify the ratio of the

local field enhancements at points T and B in Fig. 1 with the field

envelope, or average:

2 &+(H2
RT/B) - s , (5.2)

1E (nc(B) + E(B) E (B)

in
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where the arguments 'IT" and "IB" in (5.2) indicate the coordinates of

points T and B. Straightforward yet somewhat lengthy algebra

(Appendix D) gives

R(T/B) r for r << 1

7
T. for r >> 1 (5.3)

and (E 1 for simplicity)
0

r-k(O) 0 d(54

The complete expressions are given in Appendix D, whereas (5.3)

represents an order-of-magnitude estimate.

The result (5.3) is interpreted in the following way: The fact

that there are two regimes, crudely defined by X << d and X >> d, can be

understood in terms of the electrons' relative response to an incident

field at the top of the peaks and the bottom of the troughs. When

X >> d Cr << I), the electrons at the peaks' tops respond poorly by

comparison to the electrons at the bottom of the troughs, simply because

the former are confined to the metallic fingers of the grating. On the

other hand, when X << d Cr >> 1), it is obvious that the response of the

electrons at the peaks' top is impeded to a much lesser degree by the

boundaries of the grating's fingers, while the electrons at the troughs'

bottoms respond in about the same manner as in the X >> d regime. This

consideration implies that R(T/B) is smaller for X >> d than for X << d,

which is born out by (3.3). The fact that in both regimes R(T/B) -

<< 1 is in keeping with the above picture: Since the grating is deep,

for normal incidence it is always easier for the electrons to respond

when they are located at the bottoms of the troughs than when they are
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at the tops of the peaks. Note that these considerations do not depend

on g, since they pertain to relative magnitude. It is interesting to

notice that the same trends are present in numerical studies of shallow-

graings.

6. Discussion and Summary

The main message of this work is that for the very deep sinusoidal

grating limit (8 >>> 1), the physics simplifies considerably: By

introducing a sequence of reasonable approximations, the problem of

inverting the Fresnel matrix (2.6) of order B has been reduced to the

calculation of eight matrix elements (3.10). The simplicity of the

outcome is in keeping with a related study of the surface-plasmon

dispersion for an infinite stack of metallic thin films.9

With regard to the surface-plasmoxn dispersion relation, we find two

bands, separated by a frequency band gap given by tAw/w -0.2. These two
p

bands represent two classes of localized SP excitations: Those for

which the fields are maximized in the troughs and those where the fields

are maximized inside the peaks. The latter class of modes correspond to

the upper band since they represent an enhanced oscillation of the

electrons. This Interpretation is in keeping with the interpretation of

dispersion branch pairs already observed for shallow gratings. It is

also consistent with the analogy of the two-adjacent-band structure of

12
electrons moving in a periodic potential. With regard to the local

*field enhancement distribution, we find that the field at the bottom of

*the troughs is always larger than at the tops of the peaks. However,

the relative magnitude of the "top/bottom" enhancement exhibits

different behavior in the X >> d and X~ << d regimes. The existence of

these regimes reflect primarily the response of the electrons at the
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peaks' tops. The electrons there are restricted in their motion by the

grating's boundary, and therefore respond poorly when X >> d and much

better when X << d.

The simple outcome of this study will hopefully stimulate further

studies in the same vein. To clarify to what degree the specifics of

our results do not depend on an artifact of the approximations, it would

be desirable to attempt some refinements, e.g., the straight inversion

of the quasi-separable approximation (3.1) or (3.2). Another

possibility is to carry out large-scale exact calculations of the SG

using the dressed Rayleigh expansion as described in Section 2.3 In

* particular, it is interesting to substantiate the quantitative values we

obtain for the width and gap of the SP bands [Eq. (4.* 4) and (4.5)].

These results hopefully will generate interest also for corresponding

experimental work.
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Appendix A: Plasmon Dispersion Relation for a Shallow Grating Surface

To highlight the particular features of the 8 << 1 regime and to

appreciate the role of the various factors in (2.6), we analyze here the

shallow grating (B << 1) SP dispersion relation. The results are not

5,7,8
new, yet they are obtained here in a direct and transparent

manner.

Consider first the case of a flat surface, i.e., g - 0 in the

notation of Fig. 1. Since J (z=O) - 6 Eq. (2.6) yields m=Z and theV ,0'"

matrix M is diagonal. Consequently, for the determinant of M to vanish,

Eq. (4.1), one or more of the diagonal elements must vanish. Hence, the

dispersion relation reads

2 W( (i) k = 0 (A. 1)

or, by inserting the definitions (2.3), (A.1) yields

2 2 0O_1
k k + (A.2)

For a flat surface d - -, i.e. k G0 , so that k, - k and (A.2) is the

well-known dispersion relation. 7,8 Thus the numerator in (2.6)

involving WO(0)W1 (m) + ki k entails the retardation effects, namely,

that the SP dispersion relation cannot cross the boundaries of the light

cone.

Consider now the case of a very shallow grating, i.e., g is finite

yet a = gkG << 1. Here the argument of the Bessel function factor is

.'...14
small, yet finite. Therefore, since

lim J (z) z n for v*O
Z-O n

- 1 for v = 0 (A.3)

to first order in 6, the only non-diagonal terms that contribute are

when Im-il < 1. Thus, M is tri-diagonal, with a dominating diagonal and

Im

.
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the two first-off-diagonal of order 6. The 6 - 0 and 8 << 1 examples

discussed so far clearly indicate that the Bessel function factor in

(2.6) determines the amount of mixing of the m and Z Bragg reflections.

The non-vanishing denominator of (2.6) affects only the normalization

and the fall-off in m,i rate of Mm, 9"

To determine the conditions for (4.1) to hold when a << 1 is no

simple task in general. However, for special (k,k ) combinations the

problem can be easily solved. Let us thus consider, in particular, the

boundary of the first Brillouin zone k = k G/2 and the crossing of the 2

= 0 and k - -1 dispersion curves given by (A.2). If there were not

off-diagonal terms in M, the crossing of the curves at k = k /2 would

define a (k,k ) point for which (4.1) is satisfied. For finite g,

however, the two relevant off-diagonal elements M and M_I,0 change

the eigenvalues of M. The condition for the perturbed eigenvalues of M

to vanish [so that (4.1) is satisfied] is therefore that the

corresponding determinant vanishes:

00 O

- 0 (A.4)

M-1,0 M-1,-i
kl1 = k G/2 , 8 << 1

* Eq. (A.4) is an equation for k which has two solutions, whose

difference is the band gap. This equation can be easily solved provided

that at the Brillioun zone boundary (k = k G/2) we are allowed to

neglect retardations, i.e., kG >> k(0)Ik(1)1 In this case, W(0)

' I (-1) - Wo (0) - W0(-1) - ikG/ 2 , and some simple algebra gives the gap
/'' 7

frequency Au as

(A.5)
' V2 d

,% •
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Appendix B: Separable Approximation for the Bessel Function Factor in

(2.6)

We derive a separable approximation to the Bessel functin factor in

the matrix M:

B M' dm M-[g(Wo (i)-W11m))]

j "-: Jm_ .iB(lil-lml)] B 1

which is valid for B >> 1 and lil,lml >> 1. The second line in (B.1)

follows from (4.6). We first analyze (B.1) by considering separately

the pertinent asymptotic domains and then introduce a simplifying

separable expression.

When 1 << lI-ml <<< 8,, the argument of the Bessel function (B.I)

is much larger than its order. Correspondingly, the leading asymptotic

term is

2 1/2Jn(z) Z (I) COS[ z-(-f )]

V =-i, z = ia(lil-lmI) : g[W 0 (-W (m)] (B.2)

When j - i-ml, the argument of the Bessel function (B.1) and its order

are large and proportional each other. The asymptotic expression in

this regime is
14

-.J (1z) 1 1 eV(z) &(3/2)

/2 Ti v

'IY(z) - /1-z2 + in[z/(1+ )] . (B.3)

for jargzI r , "

To apply (B.3) to (B.1), we consider separately the three possible sub-

domains: (a) i,m > 0 (b) i,m < 0, (c) ii >> 1, Iml >> 1 and mi of

opposite s'gns. Using 14 J (z) (-I) n J (z) and J (-Z) - (-1)nJ (z), a
n n n n

simple a sis gives
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m, 7-e I14 e

nhi) = lla2 + Ln[B/(1 + 1+02)] (B.4)

where B refers to domain (a) and B to domain (b). When L and m have

different signs [domain (c)], the argument of the Bessel function (B.1)

is much smaller than its order, and hence the corresponding asymptotic

expression is
14

" (z) 1 (ez) V - m-i, z - i(1il-lml) (B.5)

Consequently, z/v - 8 I(E+m)/(Z-m)I << I and hence Bm, - 0 for most of

the m,£ combinations.

Given (B.2)-(B.5), the approximation

kM-iv 0  ) 1 )g /4 1 [ 1I)/2 [exp(io) + exp(-i,

n(8 [Wo()-W (m)] - (rn-i 0 (B.6)

k G 4

unifies all relevant domains.

".',." "...',.., -.-" ..'- .-.... "~~~ ~ ~~~~~.. .. . ..... ... .. . .. . .. .... '"-r-; , " " "' ."'":: .... _- " -



A-5

Appendix C: Reduced Auxiliary Matrix A

We calculate some and estimate the remaining matrix elements of the

auxiliary matrix A defined by

A bZ Ma (M) , 1,J - I,..4 (C.1)i,j = _

where, from (3.1) and (3.3),

a1 (m ) - W1 (m) exp[i(W1(m)(g-n( )/kG) -  )]

b 2() = CW0 () exp[i(W0 (i)(g+nf(B)/kG))]

a2 (m) W1C(m) exp[i(W (m)(g+n(B)/k) Irm +

b2 (1) CW0( ) exp[I(Wo(k)(g-n(B)Ik G) -G 9)]

a3 (m) = km exp[i(W (m)(g-n(B)/k G) -

b3(t)-- Ck£ exp[i(W 0(t)(g+q(B)/kG))]

a4(m) = k exp(i(Wl(m)(g+n( )/k0 ) + irn +

b4(k) - Ck t exp[i(WO(k)(g-rn(,)/kG - a)1 (C.2)

and C is defined in (3.3). Note that in (C.1) all the -dependence
enters via the combintion k k + L9 Gsee (C.2)]. Hence, the

summation in (C.1) can be evaluated by using the Poisson formula:15

"" " 1 -2niny/A ri- G(y+tA) : g(2nn/A) e g(t) - du G(u)e itu (C3)

9. --

w with the identifictaions y+k1l , A*kG and u-k . Furthermore, since for

most terms in (C.1) ILI >> 1, it is justified to evaluate Atj using the

asymptotic expression of W (M), Eq. (4.6). Keeping the leading term in

(4.6) is not sufficient since all references to k(j) enter in the second

term. It is therefore the first small connection to Ai~j beyond the

leading term, that carries all the physics.

-.' ' : f 2 '-. ." " - "" ' "' " " '- " " . .'
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Inserting (4.6) into (C.2), it is easily seen that all Fourier

transforms g(u) mandated by (C.3) take the form

g t) JdkL bi(k )aj (k )e k L F(nk(kte
cc -W

for: i,j - 1,...4; n 1 1,....4 and n - cBY,6 (C.4)

where

F 1(k 9.) . W0 ( ) W1 (L) Cj-k2 + 1[k2(0)+k2(1) 1

F2 (k) - C{-ik,jk,I + k 2 (O)sgn(k)j

F3 (k ) = CI-ikI1kI + 1 k2 (1)sgn(k£)}

F4(k ) - C{k 21 (C.5)

and

f" + + Wo(i)(g-n(a)/k + W1(E)[g+n(B)/k G]14 0G 1G

z + 2iglk . I - igk2 (l)

f + _ W0 (i)[g+n(8)/k]+ W1(i)[g-n(a)/k ]

it + 2iglkl -igk2(0) 0)

fy - + Wo(1)[g+n(8)/kG] + W (.)[g+n(a)] + irk

- ik/ + rkk +I~g~k .~2 2iI /k + ,,k/k + 41g9k.l - igEk (0)+k (1)3/Ik .
iT

f6 + Wo( )[g-n(O)/kG + W1 ()[g-n(a)jk G ] - Ii

~ rk1  2 2 ________it k ik i i[k2(O)+k2 (1)] 1- G k + ak k l - J4kG k . (C.6)

The sixteen Fourier transforms gi,j(t) [Eq.(C.4)] are obtained from all

combinations of the F and the fT. The explicit correspondence in
m

(Table 1) is

-.. - . _ -.-
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f with A2 ,2 ' A 2 , A 4 2 ' A 4,4

f with A2,, AA
f1 A3,, ' A,2 A, 3

ffy with AI 2 , AI, A3 2 , A3,

f6 with A2 1, A2 ,3 , A4,1' A4, 3  (C.7)

The procedure of calculating A ij is now clear. We first evaluate

the transforms (C.4) for all t-values mandated by the Poisson formula

(C.3), and then sum the contributions. As we now show, these two

operations can be carried out in closed form. An important bonus of

having analytical expressions is the possibility to identify the

dominating matrix elements of A.

Combining (C.5) and (C.6) with (4.6) implies that all integrals

(C.4) are combinations of. 6

12 
irv

f0 dx x4-  exp[- (x 2Yv e K_ (YP) (case I)0"2 X V

""I O d x -  i 2  2 H(1)YU
dx. xv exp[- (x + -)I it v e 2 (case II)

2
for Im(w) > 0, Im(Y i) > 0, any v (C.8)

where K and H denote the modified Bessel and Hankel functions of the
V V

first kind of order v, respectively. As will become clear shortly, we

shall need only the asymptotic or nearthe origin behavior the Bessel

function, given by1

K (z) ['1/2 -z
-V 2z

(1) 1/2i[z + 2 V
H (z) 2[1 e-v2 1/2

for IzI -' (C.9.a)

and

w. .

--B --~-----,~. . .- -~- ..... ~ - -
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.1 -.

K- (z) r w~v (z)v
2 2

H (z) r _ r(,) e -) VV. it 2,-

for IzI 0 . (C.9.b)

Before proceeding further, we mention that the conditions attached to

(C.8), i.e., Im(p) > 0, etc. are always fulfilled. Also because the k

integration in (C.3) is over the whole k -axis while in (C.8) it runs

over only half the axis, we subdivide the k -integration into -- -< k <

0 and 0 < k & -. The respective contributions are denoted by the "-"

and "+" superscripts in (C.10).

By virtue of (C.8) and (C.9), we ootain now an estimate of the

magnitude of g1  (t) (and therefore of the t-summed expression) by

considering the "'Yp" argument in (C.8). This factor determines the

dominating exponential or power in the expression for g ij W. Constant

phases, etc., are omitted in (C.10), but are included in the final

expressions. Straightforward algebra based on (C.3) and (C.6) gives

S. [- i 2 (1 1/2 (Case II)
a 2ig ±t

Y ± P 2[(2ig ± t)(-ik2(1)g)] 1 /2

g2 2 2 2 11/21± a)fog

. [2'k,)]' 2 1± ij) for g << t

_z 2[itgk2(1)]1/2(1 ±-)frg<

t

1/2
I+ k2(O) I (Case I)

? 2[(21g±t)(ik
2 (O)g)]1 1 2

: -.
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z 2[-2g2k2 (o)]1 /2 (1 Lt) for g > t! ~~4g fog>>t
"'"tg 2 (0)]1 2 (

"2[itgk 0]I/2 (1 ± for g << t

igk2 2 1/2
± -ji(k2(O)+k (1)1 (Case II) for k < k lvr2
Y 4g ± t ± vIk G  p

2 2  112

"[+ ig(k (0)+k (1)] (Case I) for k > k /r
Y J4ig ± t ± w/kG p

y± = 2[(4ig ± t ± v/k )(-ig(k 2 (0) + k2 (11)) 112 for k < k /1

- 2[41g 2(k 2(0) + k 2(O)]1"2 [l ; ](t+irf/k 0  for g >> t

= 2[g(t+y/kG)i(k2 (0) +k 2 (1)) 1 /2 [1 ± ] ] for g << t
.G, t+r/kG

y = 2[(4ig ± t ± f/k )(+ig(k 2 (0) = k2 (I)))] I/ 2 for k0 > kpl2
yY G p

= 2[-4g2(k2 (O) + k2 (1)) 1 2 [1 i (t+i/kG) for g >> t

- 2[g(t+/k )i(k2 (0)+k 2(1))j/2[I 4jg f or g << t
G t+ w/k

G

2 2 1/2
+ 1(k (0) + k M) (Case II) for k < k 142

6 45kG[ ± t /kGl
.'°G

Lok -2 1 / 2

ik (0) + k (1)) (Case I) for k > k Vr2

4 ± t ; n/k]P

GG

-[ t -(k2 (0) + k2 (1)))] 11 2 fork 0 > k

"". ..~~~~~ Y~~ +-2( ±t IG)( 4Bk G frk p

for all t (C.10)

-" - - . . . . ." , . . - . . .. .' " -. - . " : : : " " " -i _ . _ .
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where k = w /c and where the square roots in (C.10) and throughout [Eq.~p p

(2.3)] are chosen so that the real or imaginary parts are positive. We

have also used in (C.10), and in the rest of this Appendix, e0.1, and

the notation "Cases I and II" are defined in (C.8).

Expressions (C.10) yield a quick order-of-magnitude estimate for

g gi,j). Consider first the g >> t regime. Since gk(O) - gk(1) - gkp

B >> 1, the elements belonging to classes a, B and I call for the

asymptotic limit (C.9.a), while those of class 6 call for the limit

(C.9.b). Therefore, the leading t-independent terms in (C.10) yield the

following dominating exponents in giW(t) (Table 1):

2igk 2M 12
class a - e2i[2gk 2 (1)]

class - e - 2[-2g 
2k 2 (0)] 1 / 2

class Y - e2i [ 4 g 2 (k 2 (O)k 2 (1))] / 2 for k < kp/vr

24g2 (k2 ()+k2 M 1/ 2
- -e[-4g2(k2(0) + k2 (1))] for k k //2

class 6 1 1

for g >> t . (C.11)

The symbol "I" is the class-6 entry indicates that no exponential

factors appear, only powers. Estimates (C.11) imply that as B * ®, the

class- elements are always the smallest [k2 (1) < 0, always]. The

class-Y elements are larger than the class- elements by a factor

2 2 1/2 2 2
exp[21[4g k (1)] k (0)/k 1)] >> 1 for k < k //2, and by yet a larger

factor when k > k //2. It is therefore justified to discard (set to
p

zero) the class-a elements for the g >> t regime.

Consider now the complementary g << t regime. Considerations

similar to those above yield

-- .-.-

v.". - ,.' ',,-.'.- ., .- ', ".. ." ,...... . ". . -. . .. . - - - .- ".- ",..- .. ." " ,L < .- ,-'.-: .::;-i,
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L. 2~ttg2(1]/2

class a - 2 [itgk (1))

2 ( 1)/2
class - e2tgk

2 <2 1)j/2cla"s .s - 2i[itg(k 0) + k2 O) /class 6 -e for k :S k 12

2 2 1/2
-2[itg(k (0) + k ())] for k Z".-f p

class 6 - I

for g << t (C.12)

Since the real and imaginary parts of the square root are always chosen

to be positive, (C.12) clearly indicates that the elements belonging to

classes a, B and Y are exponentially small, while the class-6 elements

are of the order 1 (i.e., fall off as an inverse power). Therefore, in

conjunction with the Poisson sum (C.3), there is a sharp cutoff in the

u-summation for the gi (t) pertaining to classes a, 8 and Y, whereas

for the class-6 element it is necessary to sum all the way to infinity.

The cutoff L (in the u-summation) occurs [from (C.10)] when 27L/k - t ~
G

2g or L s a/n >>> 1. It is sharp in the sense that over a range AnL <<

1 the n-dependent contributions diminish as e

The asymptotic (B >> 1) vanishing by the class- elements implies

that in the evalution of A-1 only the eight elements of clases Y and 6
17

contribute We therefore turn now to the calculation of these entries

for a fixed t and then consider the summation mandated by the Poisson

formula (C.3). Straightforward algebra gives for the class-Y elements

P
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g, 2 (t). Pz (g,k )[(k 2 (0) k 2(1)] cos()

1.2: 'Y It 4
.1(t PI P(g,k )1 (3k'(0) k k2(l))] J. sir~v>(

g3,2 (t)"- P. (gk) [1(k 2(O)+ 3k2(1))] 1 sin[v>(t)] (C.13)

k /12, respectively, and
Jp

2 2 /2
r>(2C. (O)ek( exp(k I G

p 2g,k kL 2 2 1/2

Sexp[ii(- - K 1/K )] exp-.--- . (1))] ]/

(t) - 2[-4g 2(k2 (0)+k 2(1)) t + /k)
> ~gG

S< (gK) - 2iC[_ k 2(O)+k (1 1
1  2 exp(-ir/2) 1/2

[4g (k (0)+k MI

exp[in(- K /k,. " * 2 ( /2

11 <
Note that 'Y t) d." 8 ~r2 r ! £r1atfe C:655-6 elenments

>

- •
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,- P(t()I1) [2e 3 (ri/2 c1(g, t) I+ (g, t)

12 2 ir/2-
+-(k (0) + k (1)) e (I (g,t) + Ii(g,t)) ]2

g2 ,3 (t) - P (k ) [2e 3 iii/ 2(-i)(I 3 (g,t) - 13(g,t))

+ - k2 (0) e it/ 2 I (g,t) - Ii(g,t))]

g 4 1 (t) - P6 (k ) [-21 e
3fl/2 (I(g,t) - 13/g,t))

1 2 iir/2-2(1) e W/ (I (g,t) - I1(g,t)) ]

:[.g ,(t) - P (k ) 2e3 / (I (g,t) + (g,t)) ,(C.15)

where

" (k ) - C exp[i(- - + wkl/kG)]

In(g, t) - _ ± t ; ./k ]n (C.16)
G

Expressions (C.15) and (C.16) are valid for the whole k S kp domains.

The last step is to perform the t-summation implied by (C.3). As

pointed out before, for the class-6 elements (C.16), there is a sharp

cutoff at t - 2Trn/k 0 - 2g, whereas for the class-6 elements (C.18) all

values of t - 27in/k must be summed. The summations pertaining to

(C.13) and (C.15) are simply cared out by using the identities1

.

. ...,
. . . . .
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Ic"(,) = e cos[cz(n+1/2)]

m=LI cY2 s in L(L+Y) in+ )]
L e + sin[L(c-Y)]

sin(cl) s in(-)

2i(~- 2

L iw
I (a,/Y) = e sin[a(n*I/2)]

i +i //2

Ie rY2[sln[h(a+y)] _sin[L(,'-'/)]]

sin( r) sin (--) )

13 (crY) . 1 e.iYn 1
n

= - 
® a+n

+iayS+ wei sin(a )-

;i"I3 ( f) 2 da 2 1

Using (C.17) in (C.3) gives for the class-Y matrix elements

A, 2 -p (g,k() [(k2(O)+k2(1))] I(c>,LY)

A P (g, k) [(k 2(0O)+k'(1))] Ie(a Y)

I A1 , I P (gk, [1(3k 2 (0 )+k 2 (1)]i I( clY)

A3,2 P (g, k,) [L(k 2(O)+3k 2(1)ji I (a ,
i1<

where

* * *,
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42 2 1/2a - i[k (0)+k (1)] w/k for k < kp/2

> [-(k 2(0)+k 2(1)] i/kG for k > k p/A (C.18)

and

Y= +2nk /k . (C19)

For the class-6 matrix elements we obtain

A - 0 [of order (1/)])
2,3

1 -iY/2 2 k 2 2(1}A2 -P(k) e 1 2 ( +Y%( ) - kO)

,31 2 6 2
A4,1 P P(k ) e i/ 2

2 (1 n2 +' 2 )( ') - k()

A 43" 0 [of order e'(1/8)] (C.20)

In evaluating (C.20) we used a = -1/2 + (I/ ) - -0.5 in 1l1 (ct,Y) and

I 3(a,Y) of Eq. (C.17), and Y is defined in (C.19). Note that A4, 1 never

vanishes and A vanishes along a curve within the light cone k(0) -

,2k

ik

• - -°
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Appendix D: Local Field Enhancement

Our starting point is the projection of the slow component in the

field, E (X,Z) [EQ. (5.1)], along a vector v, which is either 2 or 2.L5
From (5.1), (3.16) and (C.20) one observes

V.E (xz) XI () [ Xa()][ - Xa(0)][I b()()]A D . i A4,1 k. 9. I 2t1.

A [ X9a3 ()][1 b 2(t)(£]

2,3 1 2
^ i[k x + Wo(i)z]

X - v.p0 ,+() e . (D.1)

* For B >> 1 and normal incidence (k - 0), the entries to (D.1) are [Eqs.

(2.6), (3.3), (4.16) and (C.2)]

M (.) - ik(o) 1 1 exp[ [-l.I/2 ] II > > I

ai(£) M- ik exp(-iT/4) Jil exp[-jl'/20]

a3(1) - kG exp[-ir/4] exp[-IiI2 ]

b2(M) = C ik IJ1 (-1)1 exp[-[il/28]

b4() C k £(-1) exp[, (D.2)

and from (2.3) one deduces 
1 4

w(0) - + i exp[-i/gk(0) + 71/4] k(O) k(1) /1 (D.3)
[k(O) + k(1)] 3 /

We now specialize (D.1) to points T and B in the notation of Fig.

r 1. Using the definitions (2.3), one obtains
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X (T;x) k- (0) exp[2iW0 ()g]

- - - I£I exp[2ik(O)g]

XL(T;z) - ) exp[21W0 (g ]

SeCr] - ILI expC21k(o)g]

r

X(B;x) - k() exp[ik d/2] - ILI (-)

X (B;z) - k exp[ik d/2] = (-) (.4)

where, for instance, X (T;x) indicates that in (D.1) one substitutes

v - x and the coordinates of point A,

kCO) dr kG  (D.5)

[r] is the integer closest to r from below, and A is the wavelength of

the incident light.

With the help of (D.2), (D.3) and (D.4), the field projections

(D.1) can now be calculated in a straightforward manner. Note first

that since b4() - -b4(-L) and p(i) - W(-i), the term is (4.1) involving

A does not contribute. The other terms give4,1

x.E (T) - {Z X (Tx) i(£)}
L Go=

z-. s(T) A " 1- 1, [Z X£(Tz) a3Ci)] [3 b2 (£) (1 )]I
2,3 2 L

X-9 (B X (B,X;) 11(9))

zE AI XCB,z) a3 b() (D.6)- 2,3

or explicitly

...............................................
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? -Ix. .(T)I 2 
= 2(0) for ro(

2" 1 k2 (0) 2
X-92 2() IT,x for r << 1"D

s b2 T" 2 r2 2 1

D r[ "E--/E

2

(0 2[or r >-

L: ix.E.s(B)) 2 = L k2(O)LID 2 2r8 r2 B,x

D2 2

.(2 1 1() 1 22
2 1 8 1 ( 2 2 2 B,z (D.7):z.3-, D2 2 r2( r)

-i. -"w h e r e

2

' 2 - Z /T (-1) exp[)iI/8) 2

S[r.-- 2 exp[_/28] - 1 << r 1 28

.- , [r]3z"EI B - £2 exp[i2228] - r(.

" " T'z i--[r]

D r=

B,x /l[(-1) exp[-lI/2B] --

- U

I-.= [ £2 (_I)i exp[LI/26 ] - r (D.8)
I"" B,Z i -~ xp -i/

i--r4

I We added in (D.7) an order-of-magnitude estimate for the various sums.

Using (D.6) we obtain (5.3).

4*.O
W e add ed i D aes aC, ~ ~ ~ ~ U~ n (D-" ,," v " ""•"•" - ..6) we ob ai (5 , . - ) . '- . .. "-.-"""" . , ""•""i ." . "" '. . . - , , - , ""
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1 2 3

1 B Y I

2 6 a6

II 6 6 c

Table 1:Outlay of' the A,, elements according to the classification

defined in Eq. (C.7). The discussion in Appendix C implies

that for B ,the class-i terms can be neglected in

comparison to the other entries.
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Figure Captions

1. Schematic display of the sinusoidal [z =g cos(2irx/d)] grating and

the notation used in this work. The incident light (E OP and the

energy Bragg reflection are indicated. The points "T" and "B" are

* . those for which the local field enhancement Is evaluated.

2. Display of the surface-plasmon flat bands, Eq. ( 4 . 4 ). The light

-. cone is indicated left of the diagonal line, and k p P/c Is the

volume plasma wave vector.
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